Power Spectral Analysis of Elementary Cellular Automata
نویسنده
چکیده
Spectral analysis of elementary cellular automata is performed. A power spectrum is calculated from the evolution of 88 independent rules starting from random initial configurations. As a result, it is found that rule 110 exhibits 1/f noise during the longest time steps. Rule 110 has proved to be capable of supporting universal computation. These results suggest that there is a relationship between computational universality and 1/f noise in cellular automata.
منابع مشابه
Energy Efficient Novel Design of Static Random Access Memory Memory Cell in Quantum-dot Cellular Automata Approach
This paper introduces a peculiar approach of designing Static Random Access Memory (SRAM) memory cell in Quantum-dot Cellular Automata (QCA) technique. The proposed design consists of one 3-input MG, one 5-input MG in addition to a (2×1) Multiplexer block utilizing the loop-based approach. The simulation results reveals the excellence of the proposed design. The proposed SRAM cell achieves 16% ...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملSolving the Parity Problem with Rule 60 in Array Size of the Power of Two
In the parity problem, a given cellular automaton has to classify any initial configuration into two classes according to its parity. Elementary cellular automaton rule 60 can solve the parity problem in periodic boundary conditions with array size of the power of two. The spectral analysis of the configurations of rule 60 at each time step in the evolution reveals that spatial periodicity emer...
متن کاملNovel Phase-frequency Detector based on Quantum-dot Cellular Automata Nanotechnology
The electronic industry has grown vastly in recent years, and researchers are trying to minimize circuits delay, occupied area and power consumption as much as possible. In this regard, many technologies have been introduced. Quantum Cellular Automata (QCA) is one of the schemes to design nano-scale digital electronic circuits. This technology has high speed and low power consumption, and occup...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Complex Systems
دوره 17 شماره
صفحات -
تاریخ انتشار 2008